Oxidized Welwitindolinones from Terrestrial Fischerella spp.

Jorge I. Jimenez, Udo Huber, Richard E. Moore,* and Gregory M. L. Patterson

Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822

Received November 2, 1998

3-Hydroxy-*N*-methylwelwitindolinone C isonitrile (**3**), 3-hydroxy-*N*-methylwelwitindolinone C isothiocyanate (**4**), and the novel cyclic ether *N*-methylwelwitindolinone D isonitrile (**6**) are three new alkaloids from two terrestrial *Fischerella* spp. belonging to the Stigonemataceae. Photooxidation of *N*-methylwelwitindolinone C isonitrile (**1**) leads to isonitriles **3** and **6**. Isonitrile **3** is readily hydrated to 3-hydroxy-*N*-methylwelwitindolinone C formamide (**5**), an artifact produced during the isolation procedure.

Indole and indolinone alkaloids are commonly found in branched, filamentous blue-green algae (cyanobacteria) belonging to the Stigonemataceae.^{1–9} For example, welwitindolinones, along with 12-*epi*-hapalindoles and 12-*epi*fischerindoles, are present in *Hapalosiphon welwitschii* W. & G. S. West (UH isolate IC-52-3) and *Westiella intricata* Borzi (HT-29-1).⁸ Herein we report the isolation of 3-hydroxywelwitindolinones and a related ether from terrestrial *Fischerella muscicola* (Thuret) Gomont (HG-39-5) and *Fischerella major* Gomont (HX-7-4).

The cyanophytes were mass cultured in the laboratory, and the extract¹⁰ of each alga was subjected to successive gel filtration, normal-phase column chromatography, and reversed-phase HPLC. Eight alkaloids were isolated and identified on the basis of their spectral properties. Four of these were known natural products: welwitindolinone A isonitrile, *N*-methylwelwitindolinone C isonitrile (1), *N*methylwelwitindolinone C isothiocyanate (2), and 12-*epi*fischerindole I isonitrile. The remaining four were new alkaloids: 3-hydroxy-*N*-methylwelwitindolinone C isothiocyanate (4), 3-hydroxy-*N*-methylwelwitindolinone C formamide (5), and *N*-methylwelwitindolinone D isonitrile (6). The formamide 5, however, appeared to be an artifact of 3 produced during the isolation procedure.

Results and Discussion

Alkaloid **3** was isolated from *F. muscicola* HG-39-5 in 0.0016% yield and from *F. major* HX-7-4 in 0.0058% yield. Its EIMS displayed a 3:1 M⁺ ion cluster at *m/z* 396/398 and a very strong fragment ion at *m/z* 361 for loss of a chlorine from the molecular ion. HREIMS established the molecular formula as $C_{22}H_{21}CIN_2O_3$. The IR and ¹³C NMR spectra exhibited peaks [ν_{max} 2144 cm⁻¹; δ_C 164.3] that

were characteristic of an isonitrile. Inspection of the ¹H and ¹³C NMR data strongly suggested that **3** was *N*-methylwelwitindolinone C isonitrile (1) substituted at C-3 with a hydroxyl group. Apart from the absence of the H-3 signal and the presence of a broad signal for an exchangeable OHproton (δ 2.65) and small differences in chemical shifts for the other signals, the ¹H NMR spectrum of 3 was similar in appearance to that of 1, and this suggested that the relative stereochemistries of 1 and 3 were the same. Furthermore, the CD spectra of 1,11 which showed a positive peak at 260 nm ($\Delta \epsilon$ +8.3) and a negative peak at 235 nm ($\Delta \epsilon$ -32.0), and **3**, which showed a positive peak at 270 nm ($\Delta \epsilon$ +8.0) and a negative peak at 226 nm ($\Delta \epsilon$ -22.7), had similar shapes, and this suggested that the two analogues not only had identical relative stereochemistry, but identical absolute stereochemistry. The corresponding 3-epi analogues would probably have shown appreciably different ¹H NMR and CD spectra. Nevertheless, rigorous proof was obtained when it was found that photooxidation of 1 led to 3 and 6.

Alkaloid **4** was isolated from *F. major* in 0.027% yield. Its EIMS showed a 3:1 M⁺ ion cluster at m/z 428/430 and a fragment ion at m/z 393 for loss of a chlorine atom from the molecular ion. HREIMS gave the elemental composition C₂₂H₂₁ClN₂O₃S. Comparison of the ¹H and ¹³C NMR spectra for **4** with those for **3** indicated that both alkaloids were identical in gross structure and relative stereochemistry and differed only in the nature of the group on C-11. The presence of a strong band at 2045 cm⁻¹ in the IR spectrum and a signal at 141.2 ppm in the ¹³C NMR spectrum established the presence of an isothiocyanate group. Analogue 4 obviously had to have an isothiocyanate group attached to C-11 instead of an isonitrile group. Because the CD spectra of 4, which showed a positive peak at 270 nm ($\Delta \epsilon$ +7.1) and a negative peak at 227 nm ($\Delta \epsilon$ -15.9), and **3** were similar in shape, the absolute stereochemistries of these two compounds were identical.

Alkaloid **5** was isolated from *F. muscicola* HG-39-5 in <0.001% yield and from *F. major* HX-7-4 in 0.0033% yield. The FABMS showed a 3:1 MH⁺ ion cluster at m/z 415/417 consistent with the molecular formula $C_{22}H_{23}ClN_2O_4$. The ¹H NMR spectrum showed that the alkaloid was a formamide, which proved to be identical with the hydration product of **3**. A close examination of the isolation procedure for **3** indicated that it was being slowly converted into **5**.

Alkaloid **6** was isolated from *F. major* in 0.004% yield. The DCIMS and positive ion FABMS both showed an intense MH⁺ ion at m/z 377, and the EIMS exhibited a strong molecular ion at m/z 376. HREIMS indicated its elemental composition was C₂₂H₂₀N₂O₄. The absence of

^{*} To whom correspondence should be addressed. Tel.: (808) 956-7232. Fax: (808) 956-5908. E-mail: moore@gold.chem.hawaii.edu.

Scheme 1

chlorine in this alkaloid was at first surprising, as 6 could be generated by ${}^1\mathrm{O}_2\text{-}oxidation$ of 1. Analysis of the ${}^1\mathrm{H}$ and ¹³C NMR spectra, which were typical of an N-methylwelwitindolinone, confirmed that there were 22 carbons and 20 hydrogens in the molecule. No evidence, however, could be found for the presence of an exchangeable proton in 6, such as an OH group on C-3. The IR spectrum totally lacked absorption in the 3200–3700 cm⁻¹ region; however, the ¹³C chemical shift for C-3 (87 ppm), which was at a lower field than normally shown for an OH-bearing C-3, suggested that an ether-type oxygen was attached to C-3. Unlike 1 and 3, however, 6 possessed another ketone group. HMBC correlations from H-14, H-15, and H₃-19 established C-13 as the second ketone carbonyl ($\delta_{\rm C}$ 201.2) and C-14 as an oxygen-bearing methine ($\delta_{\rm H}$ 4.92; $J_{\rm H14,C14}$ = 158 Hz). Because three of the four oxygens in 6 belonged to carbonyls, the remaining oxygen had to be in an ether that connected C-3 and C-14. A coupling constant of 7.5 Hz between H-14 and H-15 was consistent with the dihedral angle of 28° between these two protons.¹² A NOE signal was completely absent between H₃-19 and H-14, and significant NOE signals could be seen from H₃-17 (but not from H₃-18) to both H-14 and H-15. H-14 was therefore oriented equatorially on the six-membered ring containing the two ketone groups. All of these data were consistent with the ether structure shown for **6**. IR (2138 cm⁻¹) and ¹³C NMR (165.5 ppm) data indicated that **6** was an isonitrile. Alkaloid 6 had to have the same relative (e.g., at C-12) and absolute stereochemistry as 1 and 3, because 3 and 6 were both produced by a photocatalyzed oxidation of 1.

(3.5)-Hydroperoxy (**a**), (13*S*,14*R*)-epoxy (**b**), and (14*S*)chloro-13-oxo (**c**) intermediates may be involved in the formation of **6** from **1** (Scheme 1 and Figure 1 in Supporting Information). In the proposed pathway, **1** is first photocatalytically oxidized, most likely by a free-radical mechanism, to the hydroperoxide **a**. Simple reduction of **a** leads to **3**; however, an intramolecular epoxidation of the chloroalkene group by the hydroperoxy group of **a** leads to chloroepoxide **b**.¹³ Cyclization of the 3-OH oxygen to C-14 of **b**, with concomitant opening of the epoxide ring, formation of the keto group on C-13, and loss of H⁺ and Cl⁻, results in **6**.¹⁴ Alternatively, **6** could be forming by rearrangement of **b** to an α -chloroketone **c** prior to an intramolecular cyclization of the 3-OH oxygen onto C-14. The latter route, however, is a much less likely one inasmuch as chloroepoxides require relatively high temperatures to rearrange to $\alpha\text{-chloroketones.}^{15,16}$

Experimental Section

Spectral Analysis. NMR spectra were determined on a 11.75-T instrument operating at 500 MHz for ¹H and 125 MHz for ¹³C. ¹H chemical shifts are referenced in CDCl₃ and CD₂Cl₂ to residual CHCl₃ (7.24 ppm) and CHDCl₂ (5.32 ppm); ¹³C chemical shifts are referenced to the solvent (CDCl₃, 77.0 ppm; CD₂Cl₂, 52.8 ppm). Homonuclear connectivities were determined by using 2D double-quantum filtered COSY and 1D decoupling experiments. Homonuclear ¹H NOEs were obtained by difference NOE experiments using a 2-s irradiation period. One-bond heteronuclear ¹H-¹³C connectivities were determined by 2D proton-detected HMQC experiments; two- and three-bond ¹H-¹³C connectivities were determined by 2D proton-detected HMBC experiments. MS were determined in the EI (at UH), DCI, and FAB modes. UV spectra were measured in MeOH at 20 °C. Optical rotations were measured in CH_2Cl_2 and $CHCl_3$ at 20 °C or 25 °C at the sodium D line (589 nm).

Isolation and Cultivation of Algae. A nonaxenic, unialgal strain of *Fischerella muscicola* (Thuret) Gomont, designated UH strain HG-39-5, was isolated from an epilithic sample collected at Nau Madol, Pohnpei, Micronesia, and purified by repeated subculture on solidified media. The cyanophyte was cultured in autoclaved 20-L glass carboys containing an inorganic medium (modified BG-11) adjusted to pH 7.0 with MOPS. Cultures were continuously illuminated at an incident intensity of $80-100 \ \mu$ mol photos m⁻² s⁻¹ (photosynthetically active radiation) from banks of cool-white fluorescent tubes and vigorously aerated at a rate of 5 L/min with a mixture of 0.5% CO₂ in air at a temperature of 24 ± 1 °C. After 32 days the alga was harvested by filtration onto Whatman no. 4 paper. The yield of lyophilized cells was 0.51–0.71 g/L.

UH isolate HX-7-4, an epipelic cyanophyte identified as *Fischerella major* Gomont, was collected in March 1989, on the grounds of the Guindy campus of Madras University, Tamil Nadu, India. The cyanophyte was purified, and unialgal, nonaxenic mass cultures were grown in culture as described above. Incubation time ranged from 38 to 46 days. The yield of lyophilized cells was 0.24 to 0.47 g/L.

Isolation of Alkaloids from Fischerella muscicola HG-**39-5.** The freeze-dried alga (61.0 g) was extracted twice with 2.0 L of CH_2Cl_2 -2-propanol (1:1) overnight. The extracts were combined and concentrated under reduced pressure to a green solid. This material was dissolved in MeOH and then applied to a Sephadex LH20–120 (Fluka, 30 cm \times 2.3 cm diameter, flow rate 60 mL/h) equilibrated in MeOH. All fractions were analyzed by reversed-phase TLC and combined into three major fractions: (A) 339 mg, (B) 127 mg, and (C) 371 mg. Fraction **B** was further separated on an Econosil C₈ HPLC column (250 \times 10 mm, Alltech) using 65% CH₃CN in H₂O as the mobile phase to give N-methylwelwitindolinone C isonitrile (1, 17 mg, \geq 95% purity) and 3-hydroxy-*N*-methylwelwitindolinone C isonitrile (3, 1.0 mg), along with minor amount of 3-hydroxy-N-methylwelwitindolinone C formamide (5). Fraction C was separated on an Econosil C_{18} HPLC column (250 \times 10 mm, Alltech) using 65% CH₃CN in H₂O to provide 12epi-fischerindole I isonitrile (2.1 mg), welwitindolinone A isonitrile (3.7 mg), and N-methylwelwitindolinone C isothiocyanate (2, 1.3 mg).

Isolation of Alkaloids from Fischerella major HX-7-4. Lyophilized algae (40 g) was extracted twice with 1-L portions of CH₂Cl₂-2-propanol (1:1) overnight while stirring. The extracts were combined and evaporated under reduced pressure to give a green solid (2.9 g). The material was dissolved in MeOH, and the filtered solution was applied to a column of Sephadex LH20-120 (Fluka, 85 cm \times 4.5 cm diameter, flow rate 7 mL/min) equilibrated in MeOH. The first 600 mL of MeOH were discarded, and five fractions were taken. Only fraction 4 (1075–1325 mL, 281 mg) contained indole-like compounds according to NMR. This fraction was further

Table 1.	¹ H NMR	Data	(500	MHz)	for	Welwitindolinones	1-	- 6 ª
----------	--------------------	------	------	------	-----	-------------------	----	--------------

position	1	2	3 ^b	4 ^b	5 ^{<i>c</i>}	6 ^d
1(N)Me	3.16 s	3.15 s	3.15	3.15	3.11	3.19
3	3.75 s	3.75 s				
3-OH			2.65	not observed	not observed	
5	7.25 dd	7.18 dd	7.33 dd	7.21 dd	7.12 dd	7.29 dd
6	7.36 dd	7.33 dd	7.44 dd	7.41 dd	7.34 dd	7.45 dd
7	6.85 dd	6.83 d	6.89 dd	6.99 dd	6.82 dd	6.93 dd
14	6.24 d	6.23 d	6.40 d	6.36 d	5.95 d	4.92 d
15	3.25 d	3.28 d	3.18 d	3.22 d	3.12 d	3.57 d
17	1.67 s	1.67 s	1.71 s	1.70 s	1.63	1.55
18	0.78 s	0.79 s	0.81 s	0.75 s	0.99	0.80
19	1.53 s	1.47 s	1.55 s	1.46 s	1.32	1.39
20	5.35 m	5.32 m	5.49 dd	5.28 dd	6.55 dd	5.47 dd
21E	5.35 m	5.32 m	5.34 dd	5.60 d	5.65 d	5.36 dd
21Z	5.35 m	5.32 m	5.40 dd	5.57 d	5.43 d	5.43 dd
22(N)H					6.05 br d	
23					8.03 d	

^{*a*} Spectra of **1**-**6** recorded in CD₂Cl₂. ^{*b*} J(H,H) in Hz for **3**: 5,6 = 8.4; 6,7 = 7.7; 5,7 = 0.9; 13,14 = 4.5; 20,21(*E*) = 10.5; 20,21(*Z*) = 17.0; (21*E*),21*Z*) = 1.0. The coupling constants for **4** are within \pm 0.2 Hz of the values for **3**. ^{*c*} J(H,H) in Hz for **5**: 22,23 = 2.0; all other coupling constants for **5** are within \pm 0.2 Hz of the values for **6**: 5,6=8.3; 6,7=7.8; 5,7=0.7; 14,15=7.5; 20,21*E*=11.0; 20,21*Z*= 16.0; 21*E*,21*Z*=1.6. The following protons show significant NOE's: H₃-17 to H-14, H-15 and H-18; H₃-19 to H-21*Z*; H₃-18 to H-17.

Table 2. ¹³C NMR Chemical Shifts and ¹H HMBC Data (125 MHz) for Welwitindolinones $3-6^a$

carbon	3	4	5	6
NMe	26.6	26.6	26.2	27.1
2	173.6; NMe	176.0; NMe	175; NMe	170; NMe
3	80.6; 15,17,18	81.4; 17,18	79; <i>17,18</i>	87; 14,15,17,18
4	128.4; 6	131.6; <i>6,7</i>	134; 6	126.9; 6
5	126.2	126.8; <i>6</i>	122.8; 7	124.0
6	130.8	131.0	129.5	131.4
7	110.0	110.6; <i>5,6,NMe</i>	108.9; 5	110.5
8	145.5; 6,NMe	146.3; 6,NMe	145; <i>6,NMe</i>	144.4; 6,NMe
9	126.4; <i>5,7</i>	127.9; <i>5,7</i>	126.5; 7	126.5; <i>5,7</i>
10	193.6; <i>14,15</i>	197.8; <i>14,15</i>	200; 14	192.8; 14,15
11	82.0; <i>5,15,19</i>	85.4 ; <i>5,15,19,20</i>	71.5; <i>5,15,19,23</i>	81; <i>5,15,19</i>
12	55.5; 14,19,20,21E	57.8;14,19,20,21EZ	54; 14,19,21EZ	61.5; <i>14,19</i>
13	133.3; <i>14,19</i>	133.0; <i>14,15,19,20</i>	135; 14,15,19,20	201.2; 14,15,19
14	126.0; <i>15</i>	127.2; 15	126.2; 15	79.7
15	61.0 ; <i>15</i>	62.1; <i>14,17,18</i>	60; <i>17,18</i>	62.1; <i>17,18</i>
16	42.8; 15,17,18	43.1; <i>15,17,18</i>	43; <i>15,17,18</i>	54; <i>15,17,18</i>
17	22.8; <i>15,18</i>	23.2; 18	24.1; <i>15,18</i>	25.0; <i>15,18</i>
18	21.2; 15,17	21.7; 15,17	23.4; 17	19.7; 17
19	22.1; 20	21.8	21.3; <i>20</i>	20.2
20	137.1; <i>19,21EZ</i>	139.7; <i>19,21</i>	139.3; <i>19,21</i>	133.1; <i>19,21</i>
21	118.4; <i>20</i>	117.4	117.9	120.6
23	164.3	141.2	161.3; <i>NH</i>	165

^{*a*} Spectra recorded in CD₂Cl₂.

separated by column chromatography (Si gel, 45 cm imes 2.5 cm diameter) with CH_2Cl_2 -isooctane (10:1) to give pure Nmethylwelwitindolinone C isothiocyanate (2, 35 mg). The more polar fractions were combined (180 mg) and separated by reversed-phase HPLC (Econosil C₈, 250×10 mm column, 10 um, 2:3 CH₃CN-H₂O, flow rate 1 mL/min). Eight fractions were taken. Two of them, $23.0 < t_R < 27.6$ min and $27.6 < t_R < 32.4$ min, contained pure N-methyl-welwitindolinone C isonitrile (1, 20.7 mg) and 3-hydroxy-N-methylwelwitindolinone C isothiocyanate (4, 10.6 mg), respectively. Fractions eluting at $9.8 < t_R < 11.6$ and $14.8 < t_R < 17.2$ min gave pure 3-hydroxy-Nmethylwelwitindolinone C formamide (5, 1.3 mg) and 3-hydroxy-N-methylwelwitindolinone C isonitrile (3, 2.3 mg), respectively, after further HPLC (Econosil C₈, 250 \times 4.6 mm column, 5 µm, CH₃CN-H₂O 2:3 for 5 and CH₃CN-H₂O (1:1) for **3**, flow rate 1 mL/min). Another fraction, $11.6 < t_R < 14.8$ min, gave pure N-methylwelwitindolinone D isonitrile (6, 1.6 mg) after further HPLC (Ultracarb, 250 \times 10 mm, CH₃CN-H₂O 1:1, flow rate 2.5 mL/min).

3-Hydroxy-*N***-methylwelwitindolinone C isonitrile** (3): $[\alpha]_D -103^\circ$ (*c* 0.4, CH₂Cl₂); UV (MeOH) λ_{max} (ϵ) 220 (43 300), 266 (13 200), 301 (3600) nm; CD (MeOH) λ ($\Delta\epsilon$) 226 (-22.7), 270 (+8.0) nm; IR (CH₂Cl₂) ν_{max} 3600, 2919, 2144 (s, NC), 1725 (s), 1602, 1584, and 1355 cm⁻¹; ¹H NMR (C₆D₆) δ (multiplicity, *J* in Hz; assignment) 7.43 (d, 8.4; H-5), 6.79 (t, 8.1; H-6), 5.95 (d, 7.6; H-7), 5.91 (d, 4.4; H-14), 5.46 (dd, 10.7/ 17.3; H-20), 5.20 (d, 17.3; H-21*Z*), 5.09 (d, 10.5; H-21*E*), 2.61 (d, 4.4; H-15), 2.45 (s; NMe), 1.52 (s; H₃-17), 1.38 (s; H₃-19), 0.60 (s; H₃-18); ¹H NMR (CD₂Cl₂), see Table 1; ¹³C NMR (CD₂Cl₂), see Table 2; EIMS *m*/*z* 396/398 (3:1 M⁺ ion cluster), 381/383 (3:1 [M - Me]⁺ cluster), 361 ([M - Cl]⁺); HREIMS *m*/*z* 396.1228 (calcd for C₂₂H₂₁ClN₂O₃, 396.1241).

3-Hydroxy-*N***-methylwelwitindolinone C isothiocyanate (4):** $[\alpha]_D - 290^{\circ}$ (*c* 2.6, CD₂Cl₂); UV (MeOH) λ_{max} (ϵ) 208 (31 100), 212 (26 500), 259 (5680) nm; CD (MeOH) λ ($\Delta\epsilon$) 227 (-15.9), 270 (+7.1) nm; IR (neat) ν_{max} 3401, 2045, 1712, 1609, 1584, 1456 cm⁻¹; ¹H NMR (CD₂Cl₂), see Table 1; ¹³C NMR (CD₂Cl₂), see Table 2; EIMS *m*/*z* 428/430 (3:1 M⁺ ion cluster, 13/4), 393 ([M - Cl]⁺, 15), 283 (56), 257 (15), 200 (17), 127 (42), 91 (48), 83 (100); HREIMS *m*/*z* 428.0949 (calcd for C₂₂H₂₁ClN₂O₃S, 428.0962).

3-Hydroxy-*N***-methylwelwitindolinone C formamide** (5): 3:1 mixture of *Z:E* conformers; CD (MeOH) λ ($\Delta\epsilon$) 230 (-12.6), 267 (+5.2) nm; IR (CH₂Cl₂) ν_{max} 3272, 3049, 2931, 2860, 1719 (s), 1684 (s), 1608, 1590, 1490, 1460, and 1261 cm⁻¹; ¹H NMR (CD₂Cl₂), see Table 1; ¹³C NMR (CD₂Cl₂), see Table 2; HREIMS *m*/*z* 396.1247 (M⁺ – H₂O; calcd for C₂₂H₂₄³⁵ClN₂O₃, 396.1241); HRFABMS (glycerine) *m*/*z* 415.1445 (MH⁺; calcd for C₂₂H₂₄³⁵ClN₂O₄, 415.1425).

N-Methylwelwitindolinone D isonitrile (6): $[\alpha]_D - 30^\circ$ (CH₂Cl₂, c 0.37); UV (MeOH) λ_{max} nm (ϵ) 207 (3910), 213 (3390), 267 (824); IR (neat) ν_{max} 2934, 2138, 1732, 1608, 1590, 1463,

1366, 1345, 1192, 1040, 1016, 955 cm⁻¹; ¹H NMR (CD₂Cl₂), see Table 1; ¹³C NMR (CD₂Cl₂), see Table 2; DCIMS (NH₃) and FABMS (MeOH/glycerol) m/z 377 (MH+); EIMS m/z 376 (M+, 55), 361 (38), 333 (46), 305 (43), 279 (25), 265 (28), 251 (90), 223 (46), 222 (44), 83 (100); HREIMS m/z 376.1430 (calcd for C22H20N2O4, 376.1423).

Photooxidation of 1 to 3 and 6. A solution of 1 (25 mg, 66 μ mol) in MeOH containing a trace amount of rose bengal was vigorously aerated with pure oxygen and continuously irradiated with a 90-W bulb for 4 days. The solvent was evaporated with a stream of nitrogen and the residue chromatographed on a 20 cm \times 20 cm thin-layer silica plate (Whatman, 250 μ m), developing the chromatogram three times with CH_2Cl_2 -isooctane (7:3). Two major zones were collected from the plate, and the one with the higher R_f corresponded to recovered starting material (12.5 mg). The lower R_f fraction was rechromatographed on the thin-layer silica plate, developing the chromatogram three times with CH_2Cl_2 -isooctane (3: 2). The faster moving band yielded 1.3 mg of 3. The slower moving band gave 0.8 mg of 6. The semisynthetic 3 and 6 were identical in all respects, including optical properties, with the natural products.

Hydration of 3 to 5. A stirred solution of 3 (2 mg) in 300 μ L of THF was treated with 2.5 N HCl (200 μ L) at 0 °C and then allowed to warm to room temperature. After 12 h the mixture was neutralized with 2.5 N NaOH and extracted with CH₂Cl₂. The dried extract was subjected to reversed-phase HPLC (Phenomenex Ultracarb 5 ODS 30, 20 × 10 mm, 2.0 mL/min) with MeCN $-H_2O$ (3:2) to give 1 mg of 5, which was identical in all respects with the 5 isolated from the cyanobacterial extract.

Acknowledgment. This research was supported by grant CHE95-30794 from the National Science Foundation. One of us (U.H.) thanks the Deutsche Forschungsgemeinschaft for a postdoctoral fellowship.

Supporting Information Available: Figure 1: molecular modeling of the proposed pathway for the photooxidation of 1 via intermediates $\mathbf{a} - \mathbf{d}$ to $\mathbf{6}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Moore, R. E.; Cheuk, C.; Patterson, G. M. L. J. Am. Chem. Soc. 1984, 106.6456 - 6457.

- (2) Moore, R. E.; Cheuk, C.; Yang, X.-Q. G.; Patterson, G. M. L.; Bonjouklian, R.; Smitka, T. A.; Mynderse, J. S.; Foster, R. S.; Jones, N. D.; Swartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1987, 52, 1036-1043.
- (3)Schwartz, R. E.; Hirsch, C. F.; Springer, J. P.; Pettibone, J. P.; Zink, D. L. J. Org. Chem. 1987, 52, 3706–3708.
 (4) Moore, R. E.; Yang, X.-Q. G.; Patterson, G. M. L. J. Org. Chem. 1987,
- 52, 3773-3777.
- Moore, R. E.; Yang, X.-Q. G.; Patterson, G. M. L.; Bonjouklian, R.; Smitka, T. A. *Phytochemistry* **1989**, *28*, 1565–1567. (5)
- Smitka, T. A.; Borojouklian, R.; Dooli, L.; Jones, N. D.; Deeter, J.
 B.; Prinsep, M. R.; Yoshida, W.; Moore, R. E.; Patterson, G. M. L. J.
 Org. Chem. 1992, 57, 857–861. (6)
- (7) Park, A.; Moore, R. E.; Patterson, G. M. L. Tetrahedron Lett. 1992, 33. 3257-3260.
- Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson,
 G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. *J. Am. Chem. Soc.* **1994**, *116*, 9935–9942. (8)
- (9) Klein, D.; Daloze, D.; Braekman, J. C.; Hoffmann, L.; Demoulin, V. J. Nat. Prod. 1995, 58, 1781-1785.
- (10) All of the extracts show antifungal activity against Asperigillus oryzae, Penicillium notatum, Saccharomyces cerevisiae, and Trichophyton mentagrophytes. The isonitriles are generally responsible for this activity
- (11) The absolute stereochemistry of 2 has been solved by X-ray crystallography through use of the anomalous despersion technique.⁸ Because the CD spectra of 1 and 2 are similar in shape, 1 must have the same absolute stereochemisty as 2.
- (12) Dihedral angles were determined from molecular models generated from CS Chem3D Pro.
- (13) Naturally occurring chloroepoxides are known. (a) Nakanishi, S.; Ando, K.; Kawamoto, I.; Yasuzawa, T.; Sano, H.; Kase, H. J. Antibiot. **1989**, 42, 1775–1783. (b) Hirayama, N.; Shimizu, E. Acta Crystallogr. 1990, C46, 1515-1519. (c) Stadler, M.; Anke, H.; Bergquist, K.-E.; Sterner, O. J. Antibiot. 1993, 46, 968-971.
- (14) Reaction of 1-chlorocyclohexene oxide or its thermal rearrangement product 2-chlorocyclohexanone with a nucleophile results in the same product. For example, hydrolysis of either compound at 0-37 °C leads quantitatively to 2-hydroxycyclohexanone. No significant rearrangement of the chloroepoxide to the α -chloroketone occurs during the hydrolysis, as the rearrangement requires a higher temperature (80-100 °C). Both compounds react with amines to give the same 2-aminocyclohexanones. Gold, B.; Leuschen, T. Chem.-Biol. Interact. 1983, 45, 305-314.
- (15) A mixture of 1-chloro-*cis* and -*trans*-4-methylcyclohexene oxide rearranges exclusively to *trans*-2-chloro-4-methylcyclohexanone at 80–100 °C. A common α -keto carbonium ion–chloride ion-pair intermediate is proposed. McDonald, R. N.; Tabor, T. E. J. Am. Chem. Soc. **1967**, *89*, 6573–6578.
- (16) (a) McDonald, R. N.; Steppel, R. N. J. Am. Chem. Soc. 1970, 92, 5664–5670.
 (b) McDonald, R. N.; Cousins, R. C. J. Org. Chem. 1980, 45, 2976-2984.

NP980485T